NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. RIEMANN INTEGRALS

Notation 1.1.

- (i) : All functions f, g, h... are bounded real valued functions defined on [a, b]. And $m \leq f \leq M$.
- (ii) : \mathcal{P} : $a = x_0 < x_1 < \dots < x_n = b$ denotes a partition on [a, b]; $\Delta x_i = x_i x_{i-1}$ and $\|\mathcal{P}\| = \max \Delta x_i$.
- (*iii*) : $M_i(f, \mathcal{P}) := \sup\{f(x) : x \in [x_{i-1}, x_i\}; m_i(f, \mathcal{P}) := \inf\{f(x) : x \in [x_{i-1}, x_i\}.$ And $\omega_i(f, \mathcal{P}) = M_i(f, \mathcal{P}) - m_i(f, \mathcal{P}).$
- (iv) : $U(f, \mathcal{P}) := \sum M_i(f, \mathcal{P}) \Delta x_i$; $L(f, \mathcal{P}) := \sum m_i(f, \mathcal{P}) \Delta x_i$.
- (v) : $\Re(f, \mathcal{P}, \{\xi_i\}) := \sum f(\xi_i) \Delta x_i$, where $\xi_i \in [x_{i-1}, x_i]$.
- (vi) : $\Re[a,b]$ is the class of all Riemann integral functions on [a,b].

Definition 1.2. We say that the Riemann sum $\mathcal{R}(f, \mathcal{P}, \{\xi_i\})$ converges to a number A as $||\mathcal{P}|| \to 0$ if for any $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - \mathcal{R}(f, \mathcal{P}, \{\xi_i\})| < \varepsilon$$

for any $\xi_i \in [x_{i-1}, x_i]$ whenever $\|\mathcal{P}\| < \delta$.

Theorem 1.3. $f \in \mathbb{R}[a,b]$ if and only if for any $\varepsilon > 0$, there is a partition \mathbb{P} such that $U(f, \mathbb{P}) - L(f, \mathbb{P}) < \varepsilon$.

Lemma 1.4. $f \in \Re[a, b]$ if and only if for any $\varepsilon > 0$, there is $\delta > 0$ such that $U(f, \mathbb{P}) - L(f, \mathbb{P}) < \varepsilon$ whenever $\|\mathbb{P}\| < \delta$.

Proof. The converse follows from Theorem 1.3.

Assume that f is integrable over [a, b]. Let $\varepsilon > 0$. Then there is a partition $Q : a = y_0 < ... < y_l = b$ on [a, b] such that $U(f, Q) - L(f, Q) < \varepsilon$. Now take $0 < \delta < \varepsilon/l$. Suppose that $\mathcal{P} : a = x_0 < ... < x_n = b$ with $\|\mathcal{P}\| < \delta$. Then we have

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) = I + II$$

where

$$I = \sum_{i:Q \cap (x_{i-1}, x_i) = \emptyset} \omega_i(f, \mathcal{P}) \Delta x_i;$$

and

$$II = \sum_{i:Q \cap (x_{i-1}, x_i) \neq \emptyset} \omega_i(f, \mathcal{P}) \Delta x_i$$

Notice that we have

$$I \le U(f, \mathcal{Q}) - L(f, \mathcal{Q}) < \varepsilon$$

Date: March 14, 2016.

and

$$II \le (M-m) \sum_{i:Q \cap (x_{i-1},x_i) \neq \emptyset} \Delta x_i \le (M-m) \cdot l \cdot \frac{\varepsilon}{l} = (M-m)\varepsilon.$$

The proof is finished.

Theorem 1.5. $f \in \mathbb{R}[a, b]$ if and only if the Riemann sum $\mathbb{R}(f, \mathbb{P}, \{\xi_i\})$ is convergent. In this case, $\mathbb{R}(f, \mathbb{P}, \{\xi_i\})$ converges to $\int_a^b f(x) dx$ as $\|\mathbb{P}\| \to 0$.

Proof. For the proof (\Rightarrow) : we first note that we always have

$$L(f, \mathcal{P}) \le \mathcal{R}(f, \mathcal{P}, \{\xi_i\}) \le U(f, \mathcal{P})$$

and

$$L(f, \mathcal{P}) \leq \int_{a}^{b} f(x) dx \leq U(f, \mathcal{P})$$

for any $\xi_i \in [x_{i-1}, x_i]$ and for all partition \mathcal{P} .

Now let $\varepsilon > 0$. Lemma 1.4 gives $\delta > 0$ such that $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$ as $\|\mathcal{P}\| < \delta$. Then we have

$$|\int_{a}^{b} f(x)dx - \mathcal{R}(f, \mathcal{P}, \{\xi_i\})| < \varepsilon$$

as $\|\mathcal{P}\| < \delta$. The necessary part is proved and $\mathcal{R}(f, \mathcal{P}, \{\xi_i\})$ converges to $\int_a^b f(x) dx$. For (\Leftarrow): there exists a number A such that for any $\varepsilon > 0$, there is $\delta > 0$, we have

$$A - \varepsilon < \Re(f, \mathcal{P}, \{\xi_i\}) < A + \varepsilon$$

for any partition \mathcal{P} with $\|\mathcal{P}\| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$. Now fix a partition \mathcal{P} with $\|\mathcal{P}\| < \delta$. Then for each $[x_{i-1}, x_i]$, choose $\xi_i \in [x_{i-1}, x_i]$ such that $M_i(f, \mathcal{P}) - \varepsilon \leq f(\xi_i)$. This implies that we have

$$U(f, \mathcal{P}) - \varepsilon(b - a) \le \mathcal{R}(f, \mathcal{P}, \{\xi_i\}) < A + \varepsilon.$$

So we have shown that for any $\varepsilon > 0$, there is a partition \mathcal{P} such that

(1.1)
$$\overline{\int_{a}^{b}} f(x)dx \le U(f, \mathcal{P}) \le A + \varepsilon(1+b-a).$$

By considering -f, note that the Riemann sum of -f will converge to -A. The inequality 1.1 will imply that for any $\varepsilon > 0$, there is a partition \mathcal{P} such that

$$A - \varepsilon (1 + b - a) \leq \underline{\int_{a}^{b}} f(x) dx \leq \overline{\int_{a}^{b}} f(x) dx \leq A + \varepsilon (1 + b - a).$$

The proof is finished.

Theorem 1.6. Let $f \in \mathbb{R}[c,d]$ and let $\phi : [a,b] \longrightarrow [c,d]$ be a strictly increasing C^1 function with f(a) = c and f(b) = d.

Then $f \circ \phi \in \mathbb{R}[a, b]$, moreover, we have

$$\int_{c}^{d} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt.$$

 $\mathbf{2}$

Proof. Let $A = \int_c^d f(x) dx$. By Theorem 1.5, we need to show that for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k| < \varepsilon$$

for all $\xi_k \in [t_{k-1}, t_k]$ whenever $\Omega : a = t_0 < ... < t_m = b$ with $\|\Omega\| < \delta$. Now let $\varepsilon > 0$. Then by Lemma 1.4 and Theorem 1.5, there is $\delta_1 > 0$ such that

$$(1.2) |A - \sum f(\eta_k) \triangle x_k| < \epsilon$$

and

(1.3)
$$\sum \omega_k(f, \mathcal{P}) \triangle x_k < \varepsilon$$

for all $\eta_k \in [x_{k-1}, x_k]$ whenever $\mathcal{P} : c = x_0 < \ldots < x_m = d$ with $||\mathcal{P}|| < \delta_1$. Now put $x = \phi(t)$ for $t \in [a, b]$.

Now since ϕ and ϕ' are continuous on [a, b], there is $\delta > 0$ such that $|\phi(t) - \phi(t')| < \delta_1$ and $|\phi'(t) - \phi'(t')| < \varepsilon$ for all t, t' in [a, b] with $|t - t'| < \delta$.

Now let $\Omega : a = t_0 < ... < t_m = b$ with $\|\Omega\| < \delta$. If we put $x_k = \phi(t_k)$, then $\mathcal{P} : c = x_0 < ... < x_m = d$ is a partition on [c, d] with $\|\mathcal{P}\| < \delta_1$ because ϕ is strictly increasing.

Note that the Mean Value Theorem implies that for each $[t_{k-1}, t_k]$, there is $\xi_k^* \in (t_{k-1}, t_k)$ such that

$$\triangle x_k = \phi(t_k) - \phi(t_{k-1}) = \phi'(\xi_k^*) \triangle t_k.$$

This yields that

(1.4)

$$|\triangle x_k - \phi'(\xi_k) \triangle t_k| < \varepsilon \triangle t_k$$

for any $\xi_k \in [t_{k-1}, t_k]$ for all k = 1, ..., m because of the choice of δ . Now for any $\xi_k \in [t_{k-1}, t_k]$, we have

(1.5)
$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k| \leq |A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k| + |\sum f(\phi(\xi_k^*))\phi'(\xi_k) \triangle t_k| + |\sum f(\phi(\xi_k^*))\phi'(\xi_k) \triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k|$$

Notice that inequality 1.2 implies that

$$|A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k| = |A - \sum f(\phi(\xi_k^*)) \triangle x_k| < \varepsilon.$$

Also, since we have $|\phi'(\xi_k^*) - \phi'(\xi_k)| < \varepsilon$ for all k = 1, ..., m, we have

$$\left|\sum_{k} f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k - \sum_{k} f(\phi(\xi_k^*))\phi'(\xi_k) \triangle t_k\right| \le M(b-a)\varepsilon$$

where $|f(x)| \leq M$ for all $x \in [c, d]$. On the other hand, by using inequality 1.4 we have

$$|\phi'(\xi_k) \triangle t_k| \le \triangle x_k + \varepsilon \triangle t_k$$

for all k. This, together with inequality 1.3 imply that

$$\begin{split} &|\sum f(\phi(\xi_k^*))\phi'(\xi_k) \triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k| \\ &\leq \sum \omega_k(f, \mathcal{P}) |\phi'(\xi_k) \triangle t_k| \ (\because \phi(\xi_k^*), \phi(\xi_k) \in [x_{k-1}, x_k]) \\ &\leq \sum \omega_k(f, \mathcal{P}) (\triangle x_k + \varepsilon \triangle t_k) \\ &\leq \varepsilon + 2M(b-a)\varepsilon. \end{split}$$

Finally by inequality 1.5, we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k) \triangle t_k| \le \varepsilon + M(b - a)\varepsilon + \varepsilon + 2M(b - a)\varepsilon.$$

The proof is finished.

Example 1.7. Define (formally) an improper integral $\Gamma(s)$ (called the Γ -function) as follows:

$$\Gamma(s) := \int_0^\infty x^{s-1} e^{-x} dx$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if s > 0.

Proof. Put $I(s) := \int_0^1 x^{s-1} e^{-x} dx$ and $II(s) := \int_1^\infty x^{s-1} e^{-x} dx$. We first claim that the integral II(s) is convergent for all $s \in \mathbb{R}$.

In fact, if we fix $s \in \mathbb{R}$, then we have

$$\lim_{x \to \infty} \frac{x^{s-1}}{e^{x/2}} = 0.$$

So there is M > 1 such that $\frac{x^{s-1}}{e^{x/2}} \leq 1$ for all $x \geq M$. Thus we have

$$0 \le \int_M^\infty x^{s-1} e^{-x} dx \le \int_M^\infty e^{-x/2} dx < \infty.$$

Therefore we need to show that the integral I(s) is convergent if and only if s > 0. Note that for $0 < \eta < 1$, we have

$$0 \le \int_{\eta}^{1} x^{s-1} e^{-x} dx \le \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{1}{s} (1-\eta^{s}) & \text{if } s-1 \ne -1; \\ -\ln \eta & \text{otherwise}. \end{cases}$$

Thus the integral $I(s) = \lim_{\eta \to 0+} \int_{\eta}^{1} x^{s-1} e^{-x} dx$ is convergent if s > 0. Conversely, we also have

$$\int_{\eta}^{1} x^{s-1} e^{-x} dx \ge e^{-1} \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{e^{-1}}{s} (1-\eta^{s}) & \text{if } s-1 \neq -1; \\ -e^{-1} \ln \eta & \text{otherwise }. \end{cases}$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} dx$ is divergent as $\eta \to 0+$. The result follows.

References

(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

 $E\text{-}mail \ address: \ \texttt{cwleung@math.cuhk.edu.hk}$