NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. Riemann Integrals

Notation 1.1.

(i) : All functions $f, g, h \ldots$ are bounded real valued functions defined on $[a, b]$. And $m \leq f \leq$ M.
(ii) : P $: a=x_{0}<x_{1}<\ldots<x_{n}=b$ denotes a partition on $[a, b] ; \Delta x_{i}=x_{i}-x_{i-1}$ and $\|\mathcal{P}\|=\max \Delta x_{i}$.
(iii) $: M_{i}(f, \mathcal{P}):=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\} ; m_{i}(f, \mathcal{P}):=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\}\right.\right.$. And $\omega_{i}(f, \mathcal{P})=M_{i}(f, \mathcal{P})-m_{i}(f, \mathcal{P})$.
(iv) : $U(f, \mathcal{P}):=\sum M_{i}(f, \mathcal{P}) \Delta x_{i} ; L(f, \mathcal{P}):=\sum m_{i}(f, \mathcal{P}) \Delta x_{i}$.
(v) : $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right):=\sum f\left(\xi_{i}\right) \Delta x_{i}$, where $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
(vi) : $\mathcal{R}[a, b]$ is the class of all Riemann integral functions on $[a, b]$.

Definition 1.2. We say that the Riemann $\operatorname{sum} \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to a number A as $\|\mathcal{P}\| \rightarrow$ 0 if for any $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ whenever $\|\mathcal{P}\|<\delta$.
Theorem 1.3. $f \in \mathcal{R}[a, b]$ if and only if for any $\varepsilon>0$, there is a partition \mathcal{P} such that $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$.

Lemma 1.4. $f \in \mathcal{R}[a, b]$ if and only if for any $\varepsilon>0$, there is $\delta>0$ such that $U(f, \mathcal{P})-L(f, \mathcal{P})<$ ε whenever $\|\mathcal{P}\|<\delta$.

Proof. The converse follows from Theorem 1.3.
Assume that f is integrable over $[a, b]$. Let $\varepsilon>0$. Then there is a partition $\mathcal{Q}: a=y_{0}<$ $\ldots<y_{l}=b$ on $[a, b]$ such that $U(f, Q)-L(f, Q)<\varepsilon$. Now take $0<\delta<\varepsilon / l$. Suppose that $\mathcal{P}: a=x_{0}<\ldots<x_{n}=b$ with $\|\mathcal{P}\|<\delta$. Then we have

$$
U(f, \mathcal{P})-L(f, \mathcal{P})=I+I I
$$

where

$$
I=\sum_{i: Q \cap\left(x_{i-1}, x_{i}\right)=\emptyset} \omega_{i}(f, \mathcal{P}) \Delta x_{i} ;
$$

and

$$
I I=\sum_{i: Q \cap\left(x_{i-1}, x_{i}\right) \neq \emptyset} \omega_{i}(f, \mathcal{P}) \Delta x_{i}
$$

Notice that we have

$$
I \leq U(f, \mathfrak{Q})-L(f, \mathbb{Q})<\varepsilon
$$

Date: March 14, 2016.
and

$$
I I \leq(M-m) \sum_{i: Q \cap\left(x_{i-1}, x_{i}\right) \neq \emptyset} \Delta x_{i} \leq(M-m) \cdot l \cdot \frac{\varepsilon}{l}=(M-m) \varepsilon
$$

The proof is finished.
Theorem 1.5. $f \in \mathcal{R}[a, b]$ if and only if the Riemann sum $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ is convergent. In this case, $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$ as $\|\mathcal{P}\| \rightarrow 0$.
Proof. For the proof (\Rightarrow) : we first note that we always have

$$
L(f, \mathcal{P}) \leq \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right) \leq U(f, \mathcal{P})
$$

and

$$
L(f, \mathcal{P}) \leq \int_{a}^{b} f(x) d x \leq U(f, \mathcal{P})
$$

for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ and for all partition \mathcal{P}.
Now let $\varepsilon>0$. Lemma 1.4 gives $\delta>0$ such that $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$ as $\|\mathcal{P}\|<\delta$. Then we have

$$
\left|\int_{a}^{b} f(x) d x-\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

as $\|\mathcal{P}\|<\delta$. The necessary part is proved and $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$. For (\Leftarrow) : there exists a number A such that for any $\varepsilon>0$, there is $\delta>0$, we have

$$
A-\varepsilon<\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

for any partition \mathcal{P} with $\|\mathcal{P}\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Now fix a partition \mathcal{P} with $\|\mathcal{P}\|<\delta$. Then for each $\left[x_{i-1}, x_{i}\right]$, choose $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ such that $M_{i}(f, \mathcal{P})-\varepsilon \leq f\left(\xi_{i}\right)$. This implies that we have

$$
U(f, \mathcal{P})-\varepsilon(b-a) \leq \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

So we have shown that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
\begin{equation*}
\overline{\int_{a}^{b}} f(x) d x \leq U(f, \mathcal{P}) \leq A+\varepsilon(1+b-a) \tag{1.1}
\end{equation*}
$$

By considering $-f$, note that the Riemann sum of $-f$ will converge to $-A$. The inequality 1.1 will imply that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
A-\varepsilon(1+b-a) \leq \underline{\int_{a}^{b}} f(x) d x \leq \overline{\int_{a}^{b}} f(x) d x \leq A+\varepsilon(1+b-a)
$$

The proof is finished.
Theorem 1.6. Let $f \in \mathcal{R}[c, d]$ and let $\phi:[a, b] \longrightarrow[c, d]$ be a strictly increasing C^{1} function with $f(a)=c$ and $f(b)=d$.
Then $f \circ \phi \in \mathcal{R}[a, b]$, moreover, we have

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t
$$

Proof. Let $A=\int_{c}^{d} f(x) d x$. By Theorem 1.5, we need to show that for all $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon
$$

for all $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ whenever $\mathcal{Q}: a=t_{0}<\ldots<t_{m}=b$ with $\|\mathbb{Q}\|<\delta$.
Now let $\varepsilon>0$. Then by Lemma 1.4 and Theorem 1.5, there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\left|A-\sum f\left(\eta_{k}\right) \triangle x_{k}\right|<\varepsilon \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \omega_{k}(f, \mathcal{P}) \triangle x_{k}<\varepsilon \tag{1.3}
\end{equation*}
$$

for all $\eta_{k} \in\left[x_{k-1}, x_{k}\right]$ whenever $\mathcal{P}: c=x_{0}<\ldots<x_{m}=d$ with $\|\mathcal{P}\|<\delta_{1}$.
Now put $x=\phi(t)$ for $t \in[a, b]$.
Now since ϕ and ϕ^{\prime} are continuous on $[a, b]$, there is $\delta>0$ such that $\left|\phi(t)-\phi\left(t^{\prime}\right)\right|<\delta_{1}$ and $\left|\phi^{\prime}(t)-\phi^{\prime}\left(t^{\prime}\right)\right|<\varepsilon$ for all t, t^{\prime} in $[a, b]$ with $\left|t-t^{\prime}\right|<\delta$.
Now let $\mathcal{Q}: a=t_{0}<\ldots<t_{m}=b$ with $\|\mathcal{Q}\|<\delta$. If we put $x_{k}=\phi\left(t_{k}\right)$, then $\mathcal{P}: c=x_{0}<\ldots<$ $x_{m}=d$ is a partition on $[c, d]$ with $\|\mathcal{P}\|<\delta_{1}$ because ϕ is strictly increasing.
Note that the Mean Value Theorem implies that for each $\left[t_{k-1}, t_{k}\right]$, there is $\xi_{k}^{*} \in\left(t_{k-1}, t_{k}\right)$ such that

$$
\triangle x_{k}=\phi\left(t_{k}\right)-\phi\left(t_{k-1}\right)=\phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}
$$

This yields that

$$
\begin{equation*}
\left|\triangle x_{k}-\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon \triangle t_{k} \tag{1.4}
\end{equation*}
$$

for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ for all $k=1, \ldots, m$ because of the choice of δ.
Now for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$, we have

$$
\begin{align*}
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| & \leq\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right| \\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \tag{1.5}\\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|
\end{align*}
$$

Notice that inequality 1.2 implies that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right|=\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \triangle x_{k}\right|<\varepsilon
$$

Also, since we have $\left|\phi^{\prime}\left(\xi_{k}^{*}\right)-\phi^{\prime}\left(\xi_{k}\right)\right|<\varepsilon$ for all $k=1, . ., m$, we have

$$
\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq M(b-a) \varepsilon
$$

where $|f(x)| \leq M$ for all $x \in[c, d]$.
On the other hand, by using inequality 1.4 we have

$$
\left|\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq \triangle x_{k}+\varepsilon \Delta t_{k}
$$

for all k. This, together with inequality 1.3 imply that

$$
\begin{aligned}
& \left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \\
& \leq \sum \omega_{k}(f, \mathcal{P})\left|\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|\left(\because \phi\left(\xi_{k}^{*}\right), \phi\left(\xi_{k}\right) \in\left[x_{k-1}, x_{k}\right]\right) \\
& \leq \sum \omega_{k}(f, \mathcal{P})\left(\triangle x_{k}+\varepsilon \triangle t_{k}\right) \\
& \leq \varepsilon+2 M(b-a) \varepsilon
\end{aligned}
$$

Finally by inequality 1.5 , we have

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq \varepsilon+M(b-a) \varepsilon+\varepsilon+2 M(b-a) \varepsilon
$$

The proof is finished.
Example 1.7. Define (formally) an improper integral $\Gamma(s)$ (called the Γ-function) as follows:

$$
\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if $s>0$.
Proof. Put $I(s):=\int_{0}^{1} x^{s-1} e^{-x} d x$ and $I I(s):=\int_{1}^{\infty} x^{s-1} e^{-x} d x$. We first claim that the integral $I I(s)$ is convergent for all $s \in \mathbb{R}$.
In fact, if we fix $s \in \mathbb{R}$, then we have

$$
\lim _{x \rightarrow \infty} \frac{x^{s-1}}{e^{x / 2}}=0
$$

So there is $M>1$ such that $\frac{x^{s-1}}{e^{x / 2}} \leq 1$ for all $x \geq M$. Thus we have

$$
0 \leq \int_{M}^{\infty} x^{s-1} e^{-x} d x \leq \int_{M}^{\infty} e^{-x / 2} d x<\infty
$$

Therefore we need to show that the integral $I(s)$ is convergent if and only if $s>0$.
Note that for $0<\eta<1$, we have

$$
0 \leq \int_{\eta}^{1} x^{s-1} e^{-x} d x \leq \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{1}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -\ln \eta & \text { otherwise }\end{cases}
$$

Thus the integral $I(s)=\lim _{\eta \rightarrow 0+} \int_{\eta}^{1} x^{s-1} e^{-x} d x$ is convergent if $s>0$.
Conversely, we also have

$$
\int_{\eta}^{1} x^{s-1} e^{-x} d x \geq e^{-1} \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{e^{-1}}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -e^{-1} \ln \eta & \text { otherwise }\end{cases}
$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} d x$ is divergent as $\eta \rightarrow 0+$. The result follows.

References

(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

E-mail address: cwleung@math.cuhk.edu.hk

